Bernoulli trials: Plain Jane Version

Let's start with a specific example and generalize, then go back to specifics and generalize some more (SIST p. 33)

4 Bernoulli trials. These have 2 possible outcomes, "success" or "failure", S or F (heads or tails, correct guess if milk put in first, winning ticket, etc.)

observed sample $x_0 = \langle S, S, F, S \rangle$ (or x_{obs})

We can use a random variable, which takes value 1 whenever the trial is S, 0 when it's F.

$$x_0 = <1,1,0,1>$$

equivalently,

$$x_0 = \langle X_1 = 1, X_2 = 1, X_3 = 0, X_1 = 1 \rangle$$

Let $Pr(X = 1) = \theta$ for any trial, and that trials are independent

 θ a parameter; in the Bernoulli case it's from 0 to 1

If we knew θ , if we could compute

 $Pr(x_0; \theta) = Pr(observed x_0; assuming prob of success at each trial = \theta)$

 $f(x_0; \theta)$

The joint outcome involves series of "ands"

 x_0 = the 1st trial is 1 and 2nd trial is 1 and 3rd trial is 0 and 4th trial is 1

So,
$$Pr(x_0; \theta)$$

= $Pr(X_1 = 1 \text{ and } X_2 = 1 \text{ and } X_3 = 0 \text{ and } X_4 = 1; \theta)$

Because the trials are *independent*, the probability multiplies

$$Pr(x_0; \theta) = Pr(X_1 = 1; \theta)Pr(X_2 = 1; \theta)Pr(X_3 = 0; \theta)Pr(X_4 = 1; \theta)$$

Suppose $\theta = .2$ (as in Royall's example)

(e.g., 100 balls, 20 are red and we randomly draw, and success is getting a red ball)

What's Pr(X = 1) assuming the probability of X = 1 is .2 ?

Who is buried in Grant's tomb?

Therefore, Lik(
$$\theta = .2$$
; x_0) = Pr(1,1,0,1; $.2$) = (.2)(.2)(.8)(.2)

Where did .8 come from? If Pr(S = .2) then Pr(not-S) = .8(since by the axioms, Pr(S = .8) = 1 = Pr(S) + Pr(~S))

Note SIST error last line p. 33, it should be Lik(.2) because Royall is about to use H₀: $\theta \le .2$ vs H₁: $\theta > .2$ to compare his likelihoodist inference with the frequentist significance test

We want to compare Lik($\theta = .2$; x_0) with the likelihood given $\theta = .8$ (measure of comparative "support")

$$Lik(\theta = .8; x_0) = Pr(1,1,0,1; .8) = (.)(.)(.)(.)$$

.0064 vs. .1024

In general, with this x_0 ,

Lik(
$$\theta$$
; x_0) = Pr(1,1,0,1; θ) = (θ)(θ)(1 - θ)(θ) =

$$\theta^3(1-\theta)$$

order doesn't matter

So Lik(
$$\theta = .2$$
; x_0) = Pr(1,1,0,1; $.2$) = (.2)(.2)(.8)(.2) and Lik($\theta = .8$; x_0) = Pr(1,1,0,1; $.8$) = (.8)(.8)(.2)(.8)

LR (
$$\theta$$
 = .2 over θ = .8) = .0064 / .1024

$$(.2)^3(.8)/(.8)^3(.2) = (.25)^3(4) \sim .06$$

Can also write the LR reverse LR ($\theta = .8$ over $\theta = .2$) = 16.6

It's useful to start with the Likelihoodist, because it's a key example of a logic of (comparative) evidence, and hits one of the big "wars"

Still we don't usually crank out numbers; My book does because it's taking the criticisms in their actual location and the people arguing use numbers The book asks the reader to find Lik(.75) with the same outcome <1,1,0,1> (note .75 is closer to .8 than to .2 so .8 is more likely)

This is the maximally likely θ as the observed proportion is $\frac{3}{4}$ What's Lik(.75; x₀)?

.1054

Generalize for 4 Bernoulli trials

More generally, still for 4 trials, say we don't know the result,

Write the result of the kth trial is x_k as $X_k = x_k$ Random variable, capital X_k and lower case x_k is its value

$$x_{obs} = (X_1 = x_1 \text{ and } X_2 = x_2 \text{ and } X_3 = x_3 \text{ and } X_4 = x_4)$$

$$Pr(x; \theta) = Pr(x_1; \theta)Pr(x_2; \theta)Pr(x_3; \theta) Pr(x_4; \theta)$$

These should really be frequency distributions: $f(x_1; \theta) f(x_2; \theta) f(x_3; \theta) f(x_4; \theta)$

Shortcut abbreviation for multiplying: $f(x_1; \theta) f(x_2; \theta) f(x_3; \theta) f(x_4; \theta)$

$$\prod_{k=1}^{4} f(x_k; \theta)$$

Now take the Royall example on p. 34, n = 17, there are 9 successes and 8 failures (ugly numbers, they're his)

$$Lik(x; \theta) = \theta^9 (1 - \theta)^8$$

Observed proportion of successes = .53

Even without calculating,

 θ = .53 makes the observed outcome most probable, it's the maximally likely θ value

He fixes θ = .2 and considers the Likelihood ratio of .2 and various alternatives

Since the sample proportion is .53, any value of θ further from .53 than .2 is will be less well supported than .2

Start with .2, .33 more takes us to .53, another .33 goes to .86 So any $\theta > .86$ is less likely than is .2

Likelihood ratio of .2 and .9

LR (
$$\theta$$
 = .2 over θ = .9) = [.2⁹ (.8)⁸]/[[.9⁹ (.1)⁸] = 22.2 (top p. 36)

both are too hideously small, we would never be computing them. But we can group

 $(2/9)^9 (8)^8 \sim 22$ top of p. 36

Royall:

"Because H_0 : $\theta \le .2$ contains some simple hypotheses that are better supported than some hypotheses in H_1 (e.g., $\theta = .2$ is better supported than $\theta = .9$)...the law of likelihood does not allow the characterization of these observations as strong evidence for H_1 over H_0 .

The significance tester tests H_0 : $\theta \le .2 \text{ vs. } H_1$: $\theta > .2$

So he rules out composite hypotheses.

The significance tester tests H_0 : $\theta \le .2$ vs. H_1 : $\theta > .2$

She would reject H_0 and infer some (pos) discrepancy from .2

(observed mean M – expected mean under H_0) in standard deviation or standard error units

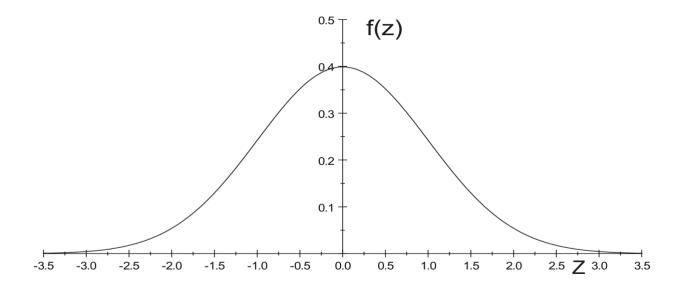
$$(.53 - .2)/.1 \sim 3.3$$

Here 1 SE is .1

Test Statistic $d(x_0)$ is (.53 - .2)/.1

Lets us use the Standard Normal curve (we're using a Normal approximation)

(area to the right of 3) \sim 0, very significant.



 $Pr(d(X) \ge d(x_0); H_0) \sim .003$

$$Pr(d(X) < d(x_0); H_0) \sim .997$$
 (see p. 35)

Admittedly, just reporting there's evidence H_1 : $\theta > .2$, as our significance tester, doesn't seem so informative either.

In inferring H_1 , she is only inferring *some* positive discrepancy from .3

A 95 % confidence interval estimate, which we have not discussed, would be .53 \pm 2SE [.33 < θ < .73]

We'll see how severity also gives a report of discrepancy and has some advantages.

The Likelihoodist gives a series of comparisons: this is better supported than that, less strongly than some other value.

If you give enough comparisons, maybe our inferences aren't so different.

Is this really a statistical inference? Or just a report of the data? For the Likelihoodist it is, and the fact that a significance test is not comparative even precludes it from being a proper measure of evidence.

One Stat War Explained

Likelihoodists maintain that any genuine test or "rule of rejection" should be restricted to comparing the likelihood of H versus some point alternative H' relative to fixed data x

No wonder the Likelihoodist disagrees with the significance tester.

Elliott Sober: "The fact that significance tests don't contrast the null with alternatives suffices to show that they do not provide a good rule for rejection" (Sober 2008, p. 56).

The significance test has an alternative H_1 : $\theta > 0.2$! (not a point) (STINT p. 35)

While we're at notation: let's generalize for n Bernoulli trials

 x_{obs} a member of the sample space: x_{obs} ε R real numbers)

$$x_{obs} = X_1 = x_1$$
 and $X_2 = x_2$ and $X_3 = x_3$ and $X_n = x_n$

$$Pr(x_{obs}; \theta) = f(x_1; \theta) f(x_2; \theta) f(x_3; \theta) ... f(x_n; \theta)$$

Shortcut abbreviation:

$$\prod_{k=1}^{n} f(x_k; \theta)$$

$$\prod_{k=1}^{n} f(x_k; \theta)$$

I've run out of letters, let $z = number of success out of n, n - k failures Lik(x; <math>\theta$)

$$\theta^z (1-\theta)^{n-z}$$

More notation $z = \sum_{k=1}^{n} x_k$

See the comparison in Souvenir B, likelihood vs error statistical p. 41

Spanos manuscript chapter 2: 19-21, set theoretic observations

End Part I of Mayo